Язык с

Язык с

Си (англ. C ) — компилируемый статически типизированный язык программирования общего назначения, разработанный в 1969—1973 годах сотрудником Bell Labs Деннисом Ритчи как развитие языка Би. Первоначально был разработан для реализации операционной системы UNIX, но впоследствии был перенесён на множество других платформ. Согласно дизайну языка, его конструкции близко сопоставляются типичным машинным инструкциям, благодаря чему он нашёл применение в проектах, для которых был свойственен язык ассемблера, в том числе как в операционных системах, так и в различном прикладном программном обеспечении для множества устройств — от суперкомпьютеров до встраиваемых систем. Язык программирования Си оказал существенное влияние на развитие индустрии программного обеспечения, а его синтаксис стал основой для таких языков программирования, как C++, C#, Java и Objective-C.

  • assert.h
  • complex.h (C99)
  • ctype.h
  • errno.h
  • fenv.h (C99)
  • float.h
  • inttypes.h (C99)
  • iso646.h
  • limits.h
  • locale.h
  • math.h
  • setjmp.h
  • signal.h
  • stdarg.h
  • stdbool.h (C99)
  • stddef.h
  • stdint.h (C99)
  • stdio.h
  • stdlib.h
  • string.h
  • tgmath.h
  • threads.h (C11)
  • time.h
  • wchar.h
  • wctype.h

Язык был разработан в лабораториях Bell Labs в период с 1969 по 1973 годы. Согласно Ритчи, самый активный период творчества пришёлся на 1972 год. Язык назвали «Си» (C — третья буква английского алфавита), потому что многие его особенности берут начало от старого языка «Би» (B — вторая буква английского алфавита). Существует несколько различных версий происхождения названия языка Би. Кен Томпсон указывает на язык программирования BCPL, однако существует ещё и язык Bon, также созданный им, и названный так в честь его жены Бонни.

Существует несколько легенд, касающихся причин разработки Си и его отношения к операционной системе UNIX, включая следующие:

К 1973 году язык Си стал достаточно силён, и большая часть ядра UNIX, первоначально написанная на ассемблере PDP-11/20, была переписана на Си. Это было одно из самых первых ядер операционных систем, написанное на языке, отличном от ассемблера; более ранними были лишь системы Multics (написана на ПЛ/1) и TRIPOS (написана на BCPL).

В 1978 году Брайан Керниган и Деннис Ритчи опубликовали первую редакцию книги «Язык программирования Си». Эта книга, известная среди программистов как «K&R», служила многие годы неформальной спецификацией языка. Версию языка Си, описанную в ней, часто называют «K&R C». Вторая редакция этой книги посвящена более позднему стандарту ANSI C, описанному ниже.

K&R ввёл следующие особенности языка:

  • структуры (тип данных struct );
  • длинное целое (тип данных long int );
  • целое без знака (тип данных unsigned int );
  • оператор += и подобные ему (старые операторы =+ вводили анализатор лексики компилятора Си в заблуждение, например, при сравнении выражений i =+ 10 и i = +10 ).

K&R C часто считают самой главной частью языка, которую должен поддерживать компилятор Си. Многие годы даже после выхода ANSI C он считался минимальным уровнем, которого следовало придерживаться программистам, желающим добиться от своих программ максимальной переносимости, потому что не все компиляторы тогда поддерживали ANSI C, а хороший код на K&R C был верен и для ANSI C.

После публикации K&R C в язык было добавлено несколько возможностей, поддерживаемых компиляторами AT&T и некоторых других производителей:

  • функции, не возвращающие значение (с типом void ), и указатели, не имеющие типа (с типом void* );
  • функции, возвращающие объединения и структуры;
  • имена полей данных структур в разных пространствах имён для каждой структуры;
  • присваивания структур;
  • спецификатор констант ( const );
  • стандартная библиотека, реализующая большую часть функций, введённых различными производителями;
  • перечислимый тип ( enum );
  • дробное число одинарной точности ( float ).

В конце 1970-х годов Си начал вытеснять Бейсик с позиции ведущего языка для программирования микрокомпьютеров. В 1980-х годах он был адаптирован для использования в IBM PC, что привело к резкому росту его популярности. В то же время Бьёрн Страуструп и другие в лабораториях Bell Labs начали работу по добавлению в Си возможностей объектно-ориентированного программирования. Язык, который они в итоге сделали, C++, оказал большое влияние на разработку ПО, но так и не смог сравняться по популярности [1] с Си, особенно в UNIX-подобных системах.

В 1983 году Американский национальный институт стандартов (ANSI) сформировал комитет для разработки стандартной спецификации Си. По окончании этого долгого и сложного процесса в 1989 году он был наконец утверждён как «Язык программирования Си» ANSI X3.159-1989. Эту версию языка принято называть ANSI C или C89. В 1990 году стандарт ANSI C был принят с небольшими изменениями Международной организацией по стандартизации (ISO) как ISO/IEC 9899:1990.

Одной из целей этого стандарта была разработка надмножества K&R C, включающего многие особенности языка, созданные позднее. Однако комитет по стандартизации также включил в него и несколько новых возможностей, таких, как прототипы функций (заимствованные из C++) и более сложный препроцессор.

ANSI C сейчас поддерживают почти все существующие компиляторы. Почти весь код Си, написанный в последнее время, соответствует ANSI C. Любая программа, написанная только на стандартном Си, гарантированно будет правильно выполняться на любой платформе, имеющей соответствующую реализацию Си. Однако большинство программ написаны так, что они будут компилироваться и исполняться только на определённой платформе, потому что:

  1. они используют нестандартные библиотеки, например, для графических дисплеев;
  2. они используют специфические платформо-зависимые средства;
  3. они рассчитаны на определённое значение размера некоторых типов данных или на определённый способ хранения этих данных в памяти для конкретной платформы.

После стандартизации в ANSI спецификация языка Си оставалась относительно неизменной в течение долгого времени, в то время как C++ продолжал развиваться (в 1995 году в стандарт Си была внесена Первая нормативная поправка, но её почти никто не признавал). Однако в конце 1990-х годов стандарт подвергся пересмотру, что привело к публикации ISO 9899:1999 в 1999 году. Этот стандарт обычно называют «C99». В марте 2000 года он был принят и адаптирован ANSI.

Некоторые новые особенности C99:

  • подставляемые функции ( inline );
  • объявление локальных переменных в любом операторе программного текста (как в C++);
  • новые типы данных, такие, как long long int (для облегчения перехода от 32- к 64-битным числам), явный булевый тип данных _Bool и тип complex для представления комплексных чисел;
  • массивы переменной длины (англ.) русск. ;
  • поддержка ограниченных указателей ( restrict );
  • именованная инициализация структур: struct < int x, y, z; >point = < .y=10, .z=20, .x=30 >;
  • поддержка однострочных комментариев, начинающихся на // , заимствованных из C++ (многие компиляторы Си поддерживали их и ранее в качестве дополнения);
  • несколько новых библиотечных функций, таких, как snprintf ;
  • несколько новых заголовочных файлов, таких, как stdint.h .

8 декабря 2011 опубликован новый стандарт для языка Си (ISO/IEC 9899:2011) [2] . Основные изменения:

  • поддержка многопоточности;
  • улучшенная поддержка Юникода;
  • обобщённые макросы (type-generic expressions, позволяют статичную перегрузку);
  • анонимные структуры и объединения (упрощают обращение ко вложенным конструкциям);
  • управление выравниванием объектов;
  • статичные утверждения (static assertions);
  • удаление опасной функции gets (в пользу безопасной gets_s );
  • функция quick_exit ;
  • спецификатор функции _Noreturn ;
  • новый режим эксклюзивного открытия файла.

Компиляторы Си разрабатываются сравнительно легко благодаря простоте языка и малому размеру стандартной библиотеки. Поэтому данный язык доступен на самых различных платформах (возможно, круг этих платформ шире, чем у любого другого существующего языка). К тому же, несмотря на свою низкоуровневую природу, язык позволяет создавать переносимые программы и поддерживает в этом программиста. Программы, соответствующие стандарту языка, могут компилироваться на самых различных компьютерах.

Си (как и операционная система UNIX, с которой он долгое время был связан) создавался программистами и для программистов, круг которых был бы ненамного шире круга разработчиков языка. Несмотря на это, область использования языка значительно шире задач системного программирования.

Язык создавался с одной важной целью: сделать более простым написание больших программ с минимумом ошибок по правилам процедурного программирования, не добавляя на итоговый код программ лишних накладных расходов для компилятора, как это всегда делают языки очень высокого уровня, такие, как Бейсик. С этой стороны Си предлагает следующие важные особенности:

  • простую языковую базу, из которой вынесены в библиотеки многие существенные возможности, вроде математических функций или функций управления файлами;
  • ориентацию на процедурное программирование, обеспечивающую удобство применения структурного стиля программирования;
  • систему типов, предохраняющую от бессмысленных операций;
  • использование препроцессора для, например, определения макросов и включения файлов с исходным кодом;
  • непосредственный доступ к памяти компьютера через использование указателей;
  • минимальное число ключевых слов;
  • передачу параметров в функцию по значению, а не по ссылке (при этом передача по ссылке эмулируется с помощью указателей);
  • указатели на функции и статические переменные;
  • области действия имён;
  • структуры и объединения — определяемые пользователем собирательные типы данных, которыми можно манипулировать как одним целым;
  • средства объектно-ориентированного программирования[3] ;

В то же время в Си отсутствуют:

Часть отсутствующих возможностей относительно легко имитируется встроенными средствами (например, сопрограммы можно имитировать с помощью функций setjmp и longjmp ), часть добавляется с помощью сторонних библиотек (например, для поддержки многозадачности и для сетевых функций можно использовать библиотеки pthreads, sockets и тому подобными; существуют библиотеки для поддержки автоматической сборки мусора [4] ), часть реализуется в некоторых компиляторах в виде расширений языка (например, вложенные функции в GCC).

После появления язык был хорошо принят, потому что он позволял быстро создавать компиляторы для новых платформ, а также позволял программистам довольно точно представлять, как выполняются их программы. Благодаря этому программы, написанные на Си, эффективнее написанных на многих других языках. Как правило, лишь оптимизированный вручную код на ассемблере может работать ещё быстрее, потому что он даёт полный контроль над машиной, однако развитие современных компиляторов вместе с усложнением современных процессоров сократило этот разрыв.

Одним из последствий высокой эффективности и переносимости языка стало то, что многие компиляторы, интерпретаторы и библиотеки других языков высокого уровня часто написаны на языке Си.

Многие элементы Си потенциально опасны, а последствия неправильного использования этих элементов зачастую непредсказуемы. Керниган говорит: «Си — инструмент, острый, как бритва: с его помощью можно создать и элегантную программу, и кровавое месиво». В связи со сравнительно низким уровнем языка многие случаи неправильного использования опасных элементов не обнаруживаются и не могут быть обнаружены ни при компиляции, ни во время исполнения. Это часто приводит к непредсказуемому поведению программы. Иногда в результате неграмотного использования элементов языка появляются уязвимости в системе безопасности. Необходимо заметить, что использования многих таких элементов можно избежать.

Примером ошибки является обращение к несуществующему элементу массива. Несмотря на то, что Си непосредственно поддерживает статические массивы, он не имеет средств проверки индексов массивов (проверки границ). Например, возможна запись в шестой элемент массива из пяти элементов, что, естественно, приведёт к непредсказуемым результатам. Частный случай такой ошибки называется ошибкой переполнения буфера. Ошибки такого рода приводят к большинству проблем с безопасностью.

Проблемой является также то, что автоматически и динамически создаваемые объекты не инициализируются и они могут содержать значения, оставшиеся в памяти от ранее удалённых объектов. Такое значение полностью непредсказуемо, оно меняется от одной машины к другой, от запуска к запуску, от вызова функции к вызову. Если программа использует такое значение, то результат будет непредсказуемым и не обязательно проявится сразу. Современные компиляторы пытаются диагностировать эту проблему некоторым анализом исходного кода, хотя в общем случае статическим анализом это решить нельзя.

Ещё одной распространённой проблемой является то, что память не может быть использована снова, пока она не будет освобождена программистом с помощью функции free() . В результате программист может случайно забыть освобождать эту память, но продолжать её выделять, занимая всё большее и большее пространство. Это обозначается термином утечка памяти. Наоборот, возможно освободить память слишком рано, но продолжать её использовать. Из-за того, что система выделения может использовать освобождённую память по-другому, это ведёт к непредсказуемым последствиям. Эти проблемы решаются в языках со сборкой мусора. С другой стороны, если память выделяется в функции и должна освобождаться после выхода из функции, данная проблема решается с помощью автоматического вызова деструкторов в языке C++, или с помощью локальных массивов, используя расширения C99.

Для помощи программистам на Си в решении этих и многих других проблем было создано большое число отдельных от компиляторов инструментов. Такими инструментами являются программы дополнительной проверки исходного кода и поиска распространённых ошибок, а также библиотеки, предоставляющие дополнительные функции, не входящие в стандарт языка, такие, как проверка границ массивов или ограниченная форма сборки мусора.

В языке используются (являются допустимыми):

  • все символы латинского алфавита A , B , C , D , E , F , G , H , I , J , K , L , M , N , O , P , Q , R , S , T , U , V , W , X , Y , Z a , b , c , d , e , f , g , h , i , j , k , l , m , n , o , p , q , r , s , t , u , v , w , x , y , z
  • цифры 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9
  • и специальные символы , (запятая), ; , . (точка), + , — , * , ^ , & (амперсанд), = ,

(тильда), ! , / , < , > , ( , ) , < , >, [ , ] , | , % , ? , ‘ (апостроф), » (кавычки), : (двоеточие), _ (знак подчёркивания)

Из допустимых символов формируются лексемы — предопределённые константы, идентификаторы и знаки операций. В свою очередь, лексемы являются частью выражений; а из выражений составляются инструкции и операторы.

При трансляции программы на Си из программного кода выделяются лексемы максимальной длины, содержащие допустимые символы. Если в программе имеется недопустимый символ, то лексический анализатор (или компилятор) выдаст ошибку, и трансляция программы окажется невозможной.

Также имеется символ # , который не может быть частью никакой лексемы, и используется в препроцессоре [?] .

Допустимый идентификатор — это слово (лексема), составленное из допустимых символов алфавита языка программирования, не являющееся знаком некоторой операции или разделителем.

Идентификаторы — это те имена, которые даются программным объектам — (именованным) константам, переменным, типам и функциям.

Некоторые лексемы являются зарезервированными (или, что то же самое, ключевыми) словами (см. ниже), и, поэтому, не могут быть использованы в программе в качестве идентификаторов программных объектов.

Для введения в программе на Си именованных констант используется директива препроцессора #define :

#define имя константы [значение].

Введённая таким образом константа будет действовать всюду, начиная с момента задания константы и до конца программного кода или до тех пор, пока действие заданной константы не отменено другой директивой:

#undef имя константы.

Как и для всякого макроса, для именованной константы происходит автоматическая подстановка значения константы в программном коде всюду, где употреблено имя константы.

Если для именованной константы указано некоторое значение, то для константы определяется так же и тип, соответствующий виду задаваемого значения. Различают следующие типы констант:

  • числовые (целочисленные или вещественные);
  • символьные (выделяются знаком апострофа);
  • текстовые строки (выделяются знаком двойных кавычек).

Ключевые слова — это лексемы (слова), которые зарезервированы компилятором для обозначения типов переменных, класса хранения, элементов операторов.

Стандартом С89 [?] предусмотрены следующие ключевые слова:

В стандарте C99 [?] добавлены следующие ключевые слова:

  • для обозначения того, что функция является встраиваемой: inline ;
  • для обозначения типа переменной: _Bool , _Complex , _Imaginary ;
  • для обозначения того, что объявляемый указатель указывает на блок памяти, на который не указывает никакой другой указатель: restrict .

Операция — это некоторая функция, которая выполняется над операндами и которая возвращает вычисленное значение — результат выполнения операции. Каждой операции в Си соответствует свой знак операции (см. выше).

Операнд — это константа, переменная, выражение или вызов какой-либо определённой в программе функции. Операции различают по количеству задействованных операндов, а именно — различают

  • унарные операции — операции вида [знак операции] [операнд]
  • бинарные операции [операнд] [знак операции] [операнд]
  • и тернарные операции.

Унарные операции — это операции, содержащие единственный операнд.

К унарным операциям в Си относятся следующие операции:

+ (унарный плюс), — (унарный минус),

(взятие обратного кода), ! (логическое отрицание), & (взятие адреса), * (операция разыменовывания указателя), sizeof (операция определения занимаемого объектом объёма памяти).

Бинарные операции — это операции, содержащие два операнда, между которыми расположен знак операции.

К бинарным операциям в Си относятся следующие операции:

+ (сложение), — (вычитание), * (умножение), / (деление), % (взятие остатка от деления), & (поразрядное И), | (поразрядное ИЛИ), ^ (поразрядное исключающее ИЛИ), << (логический сдвиг влево), >> (логический сдвиг вправо), && (логическое И), || (логическое ИЛИ).

Также к бинарным операциям в Си относятся операции, по сути представляющие собою присваивание:

+= (добавление к левому операнду значения, представленного правым операндом); -= (вычитание из левого операнда значения, представленного правым операндом); *= (умножение левого операнда на значение, представленное правым операндом); /= (деление левого операнда на значение, представленное правым операндом); &= (поразрядное логическое И над левым и правым операндом); |= (поразрядное логическое ИЛИ над левым и правым аргументом); ^= (поразрядное логическое исключающее ИЛИ над левым и правым аргументом); <<= (поразрядный сдвиг влево левого аргумента на количество бит, заданное правым аргументом); >>= (поразрядный сдвиг вправо левого аргумента на количество бит, заданное правым аргументом).

Данные операции предполагают, что левый операнд представляет собою лево-допустимое выражение.

В Си имеется единственная тернарная операция — условная операция, которая имеет следующий вид:

и которая имеет три операнда:

  • [условие] — логическое условие, которое проверяется на истинность,
  • [выражение1] — выражение, значение которого возвращается в качестве результата выполнения операции, если условие истинно;
  • [выражение2] — выражение, значение которого возвращается в качестве результата выполнения операции, если условие ложно.

Знаком операции здесь служит целое сочетание ? : .

Выражение — это упорядоченный набор операций над переменными. Выражения содержат операнды и знаки операций (см. выше). Порядок выполнения операций зависит от формы записи и от приоритета выполнения операций (см. ниже). У каждого выражения имеется значение — результат выполнения всех операций, входящих в выражение. С вычислением значения выражения может быть связан т. н. «побочный эффект», когда в ходе выполнения операций, меняется некоторая переменная. Другим возможным «побочным эффектом» является неявное преобразование типов.

Простейшее выражение содержит только имя переменной (её идентификатор). Значением такого выражения будет то значение (или тот объект), которое хранится в данной переменной.

Среди выражений выделяют класс лево-допустимых выражений — выражений, которые могут присутствовать слева от знака присваивания.

Операции в Си выполняются в соответствии следующей таблице приоритетов операций:

Язык с

Операцио?нная систе?ма, сокр. ОС (англ. operating system, OS ) — комплекс взаимосвязанных программ, предназначенных для управления ресурсами компьютера и организации взаимодействия с пользователем.

В логической структуре типичной вычислительной системы операционная система занимает положение между устройствами с их микроархитектурой, машинным языком и, возможно, собственными (встроенными) микропрограммами (драйверами) — с одной стороны — и прикладными программами с другой.

Разработчикам программного обеспечения операционная система позволяет абстрагироваться от деталей реализации и функционирования устройств, предоставляя минимально необходимый набор функций (см.: интерфейс программирования приложений).

В большинстве вычислительных систем операционная система является основной, наиболее важной (а иногда и единственной) частью системного программного обеспечения. С 1990-х годов наиболее распространёнными операционными системами являются системы семейства Windows, UNIX и UNIX-подобные системы.

Предшественником операционных систем следует считать служебные программы (загрузчики и мониторы), а также библиотеки часто используемых подпрограмм, начавшие разрабатываться с появлением универсальных компьютеров 1-го поколения (конец 1940-х годов). Служебные программы минимизировали физические манипуляции оператора с оборудованием, а библиотеки позволяли избежать многократного программирования одних и тех же действий (осуществления операций ввода-вывода, вычисления математических функций и т. п.).

В 1950—1960-х годах сформировались и были реализованы основные идеи, определяющие функциональность ОС: пакетный режим, разделение времени и многозадачность, разделение полномочий, реальный масштаб времени, файловые структуры и файловые системы.

Необходимость оптимального использования дорогостоящих вычислительных ресурсов привела к появлению концепции «пакетного режима» исполнения программ. Пакетный режим предполагает наличие очереди программ на исполнение, причём система может обеспечивать загрузку программы с внешних носителей данных в оперативную память, не дожидаясь завершения исполнения предыдущей программы, что позволяет избежать простоя процессора.

Уже пакетный режим в своём развитом варианте требует разделения процессорного времени между выполнением нескольких программ.

Необходимость в разделении времени (многозадачности, мультипрограммировании) проявилась ещё сильнее при распространении в качестве устройств ввода-вывода телетайпов (а позднее, терминалов с электронно-лучевыми дисплеями) (1960-е годы). Поскольку скорость клавиатурного ввода (и даже чтения с экрана) данных оператором много ниже, чем скорость обработки этих данных компьютером, использование компьютера в «монопольном» режиме (с одним оператором) могло привести к простою дорогостоящих вычислительных ресурсов.

Разделение времени позволило создать «многопользовательские» системы, в которых один (как правило) центральный процессор и блок оперативной памяти соединялся с многочисленными терминалами. При этом часть задач (таких как ввод или редактирование данных оператором) могла исполняться в режиме диалога, а другие задачи (такие как массивные вычисления) — в пакетном режиме.

Распространение многопользовательских систем потребовало решения задачи разделения полномочий, позволяющей избежать возможности изменения исполняемой программы или данных одной программы в памяти компьютера другой программой (намеренно или по ошибке), а также изменения самой системы прикладной программой.

Реализация разделения полномочий в операционных системах была поддержана разработчиками процессоров, предложивших архитектуры с двумя режимами работы процессора — «реальным» (в котором исполняемой программе доступно всё адресное пространство компьютера) и «защищённым» (в котором доступность адресного пространства ограничена диапазоном, выделенным при запуске программы на исполнение).

Применение универсальных компьютеров для управления производственными процессами потребовало реализации «масштаба реального времени» («реального времени») — синхронизации исполнения программ с внешними физическими процессами.

Включение функции масштаба реального времени позволило создавать решения, одновременно обслуживающие производственные процессы и решающие другие задачи (в пакетном режиме и/или в режиме разделения времени).

Постепенная замена носителей с последовательным доступом (перфолент, перфокарт и магнитных лент) накопителями произвольного доступа (на магнитных дисках).

Файловая система — способ хранения данных на внешних запоминающих устройствах.

  • Исполнение запросов программ (ввод и вывод данных, запуск и остановка других программ, выделение и освобождение дополнительной памяти и др.).
  • Загрузка программ в оперативную память и их выполнение.
  • Стандартизированный доступ к периферийным устройствам (устройства ввода-вывода).
  • Управление оперативной памятью (распределение между процессами, организация виртуальной памяти).
  • Управление доступом к данным на энергонезависимых носителях (таких как жёсткий диск, оптические диски и др.), организованным в той или иной файловой системе.
  • Обеспечение пользовательского интерфейса.
  • Сохранение информации об ошибках системы.
  • Параллельное или псевдопараллельное выполнение задач (многозадачность).
  • Эффективное распределение ресурсов вычислительной системы между процессами.
  • Разграничение доступа различных процессов к ресурсам.
  • Организация надёжных вычислений (невозможности одного вычислительного процесса намеренно или по ошибке повлиять на вычисления в другом процессе), основана на разграничении доступа к ресурсам.
  • Взаимодействие между процессами: обмен данными, взаимная синхронизация.
  • Защита самой системы, а также пользовательских данных и программ от действий пользователей (злонамеренных или по незнанию) или приложений.
  • Многопользовательский режим работы и разграничение прав доступа (см.: аутентификация, авторизация).

Существуют две группы определений операционной системы: «набор программ, управляющих оборудованием» и «набор программ, управляющих другими программами». Обе они имеют свой точный технический смысл, который связан с вопросом, в каких случаях требуется операционная система.

Есть приложения вычислительной техники, для которых операционные системы излишни. Например, встроенные микрокомпьютеры, содержащиеся во многих бытовых приборах, автомобилях (иногда по десятку в каждом), простейших сотовых телефонах, постоянно исполняют лишь одну программу, запускающуюся по включении. Многие простые игровые приставки — также представляющие собой специализированные микрокомпьютеры — могут обходиться без операционной системы, запуская при включении программу, записанную на вставленном в устройство «картридже» или компакт-диске.

Операционные системы нужны:

  • если нужен универсальный механизм сохранения данных;
  • для предоставления системным библиотекам часто используемых подпрограмм;
  • для распределения полномочий;
  • необходима возможность имитации «одновременного» исполнения нескольких программ на одном компьютере;
  • для управления процессами выполнения отдельных программ.

Таким образом, современные универсальные операционные системы можно охарактеризовать, прежде всего, как:

  • использующие файловые системы (с универсальным механизмом доступа к данным),
  • многопользовательские (с разделением полномочий),
  • многозадачные (с разделением времени).

Многозадачность и распределение полномочий требуют определённой иерархии привилегий компонентов в самой операционной системе. В составе операционной системы различают три группы компонентов:

  • ядро, содержащее планировщик; драйверы устройств, непосредственно управляющие оборудованием; сетевая подсистема, файловая система;
  • системные библиотеки;
  • оболочка с утилитами.

Большинство программ, как системных (входящих в операционную систему), так и прикладных, исполняются в непривилегированном («пользовательском») режиме работы процессора и получают доступ к оборудованию (и, при необходимости, к другим ресурсам ядра, а также ресурсам иных программ) только посредством системных вызовов. Ядро исполняется в привилегированном режиме: именно в этом смысле говорят, что система (точнее, её ядро) управляет оборудованием.

В определении состава операционной системы значение имеет критерий операциональной целостности (замкнутости): система должна позволять полноценно использовать (включая модификацию) свои компоненты. Поэтому в полный состав операционной системы включают и набор инструментальных средств (от текстовых редакторов до компиляторов, отладчиков и компоновщиков).

Ядро — центральная часть операционной системы, управляющая выполнением процессов, ресурсами вычислительной системы и предоставляющая процессам координированный доступ к этим ресурсам. Основными ресурсами являются процессорное время, память и устройства ввода-вывода. Доступ к файловой системе и сетевое взаимодействие также могут быть реализованы на уровне ядра.

Как основополагающий элемент операционной системы, ядро представляет собой наиболее низкий уровень абстракции для доступа приложений к ресурсам вычислительной системы, необходимым для их работы. Как правило, ядро предоставляет такой доступ исполняемым процессам соответствующих приложений за счёт использования механизмов межпроцессного взаимодействия и обращения приложений к системным вызовам ОС.

Описанная задача может различаться в зависимости от типа архитектуры ядра и способа её реализации.

Объекты ядра ОС:

К концу 1960-х годов отраслью и научно-образовательным сообществом был создан целый ряд операционных систем, реализующих все или часть очерченных выше функций. К ним относятся Atlas (Манчестерский университет), CTTS и ITSS (Массачусетский технологический институт, MIT), THE (Эйндховенский технологический университет), RS4000 (Университет Орхуса) и др. (всего эксплуатировалось более сотни различных ОС).

Наиболее развитые операционные системы, такие как OS/360 (IBM), SCOPE (CDC) и завершённый уже в 1970-х годах Multics (MIT и Bell Labs), предусматривали возможность исполнения на многопроцессорных компьютерах.

Эклектичный характер разработки операционных систем привёл к нарастанию кризисных явлений, прежде всего, связанных с чрезмерными сложностью и размерами создаваемых систем. Системы были плохо масштабируемыми (более простые не могли использовать все возможности крупных вычислительных систем; более развитые неоптимально исполнялись на малых или не могли исполняться на них вовсе) и полностью несовместимыми между собой, их разработка и совершенствование затягивались.

Задуманная и реализованная в 1969 году Кеном Томпсоном при участии нескольких коллег (включая Денниса Ритчи и Брайана Кернигана), операционная система UNIX (первоначально UNICS, что обыгрывало название Multics) вобрала в себя многие черты более ранних систем, но обладала целым рядом свойств, отличающих её от большинства предшественниц:

  • простая метафорика (два ключевых понятия: вычислительный процесс и файл);
  • компонентная архитектура: принцип «одна программа — одна функция» плюс мощные средства связывания различных программ для решения возникающих задач («оболочка»);
  • минимизация ядра (кода, выполняющегося в «реальном» (привилегированном) режиме процессора) и количества системных вызовов;
  • независимость от аппаратной архитектуры и реализация на машиннонезависимом языке программирования (язык программирования Си стал побочным продуктом разработки UNIX);
  • унификация файлов.

UNIX, благодаря своему удобству прежде всего в качестве инструментальной среды (среды разработки), обрела популярность сначала в университетах, а затем и в отрасли, получившей прототип единой операционной системы, которая могла использоваться на самых разных вычислительных системах и, более того, могла быть быстро и с минимальными усилиями перенесена на любую вновь разработанную аппаратную архитектуру.

В конце 1970-х годов сотрудники Калифорнийского университета в Беркли внесли ряд усовершенствований в исходные коды UNIX, включая работу с протоколами TCP/IP. Их разработка стала известна под именем BSD (Berkeley Software Distribution).

Задачу разработать независимую (от авторских прав Bell Labs) реализацию той же архитектуры поставил и Ричард Столлман, основатель проекта GNU.

Благодаря конкурентности реализаций архитектура UNIX стала вначале фактическим отраслевым стандартом, а затем обрела статус и стандарта юридического — ISO/IEC 9945 [1] (POSIX).

Только системы, отвечающие спецификации Single UNIX Specification, имеют право носить имя UNIX. К таким системам относятся AIX, HP-UX, IRIX, Mac OS X, SCO OpenServer, Solaris, Tru64 и z/OS.

Операционные системы, следующие стандарту POSIX или опирающиеся на него, называют «POSIX-совместимыми» (чаще встречается словоупотребление «UNIX-подобные» или «семейство UNIX», но оно противоречит статусу торгового знака «UNIX», принадлежащего консорциуму The Open Group и зарезервированному для обозначения только операционных систем, строго следующих стандарту). Сертификация на совместимость со стандартом платная, из-за чего некоторые системы не проходили этот процесс, однако считаются POSIX-совместимыми по существу.

К UNIX-подобным относятся операционные системы, основанные на последней версии UNIX, выпущенной Bell Labs (System V), на разработках университета Беркли (FreeBSD, OpenBSD, NetBSD), на основе Solaris (OpenSolaris, BeleniX, Nexenta), а также Linux, разработанная в части утилит и библиотек проектом GNU и в части ядра — сообществом, возглавляемым Линусом Торвальдсом.

Стандартизация операционных систем преследует цель упрощения замены самой системы или оборудования при развитии вычислительной системы или сети и упрощении переноса прикладного программного обеспечения (строгое следование стандарту предполагает полную совместимость программ на уровне исходного текста; из-за профилирования стандарта и его развития некоторые изменения бывают всё же необходимы, но перенос программы между POSIX-совместимыми системами обходится на порядки дешевле, чем между альтернативными), а также преемственность опыта пользователей.

Самым заметным эффектом существования этого стандарта стало эффективное разворачивание Интернета в 1990-х годах.

Коллектив, создавший UNIX, развил концепцию унификации объектов операционной системы, включив в исходную концепцию UNIX «устройство — это тоже файл» также и процессы, и любые другие системные, сетевые и прикладные сервисы, создав новую концепцию: «что угодно — это файл». Эта концепция стала одним из основных принципов системы Plan 9 (название было позаимствовано из фантастического триллера «План 9 из открытого космоса» Эдварда Вуда-младшего), призванной преодолеть принципиальные недостатки дизайна UNIX и сменившей «рабочую лошадку» UNIX System V на компьютерах сети Bell Labs в 1992 году.

Операционные системы, созданные на базе или идеях UNIX, такие как всё семейство BSD и системы Linux, постепенно перенимают новые идеи из Bell Labs. Возможно, эти новые идеи ждёт большое будущее и признание ИТ-разработчиков.

Новые концепции были использованы Робом Пайком в Inferno.

На основе Plan 9 в Испании разрабатываются системы Off++ и Plan B, носящие экспериментальный характер.

К попыткам создать пост-UNIX-архитектуру можно также отнести разработку языка программирования и операционной среды Оберон в Швейцарской высшей технической школе (ETH Zurich) под руководством профессора Никлауса Вирта.

Язык с

10.2 Tokyo (22.03.2017)

C++ Builder (по-русски обычно произносят [си-плюс-плюс би?лдэр], [си би?лдэр]) — программный продукт, инструмент быстрой разработки приложений (RAD), интегрированная среда программирования (IDE), система, используемая программистами для разработки программного обеспечения на языке программирования C++.

Изначально разрабатывался компанией Borland Software, а затем её подразделением CodeGear, ныне принадлежащим компании Embarcadero Technologies.

C++ Builder объединяет в себе комплекс объектных библиотек (STL, VCL, CLX, MFC и др.), компилятор, отладчик, редактор кода и многие другие компоненты. Цикл разработки аналогичен Delphi [1] . Большинство компонентов, разработанных в Delphi, можно использовать и в C++ Builder без модификации, но обратное утверждение неверно.

C++ Builder содержит инструменты, которые при помощи drag-and-drop действительно делают разработку визуальной, упрощает программирование благодаря встроенному WYSIWYG — редактору интерфейса и пр.

C++Builder первоначально создавалась только для платформы Microsoft Windows. Поздние версии, содержащие кроссплатформенную компонентную библиотеку Borland, поддерживают и Windows, и Linux.

В 2003 году Borland выпустила C++BuilderX (CBX), написанный при помощи той же инфраструктуры, что и JBuilder, который при этом был мало похож на C++ Builder или Delphi. Этот продукт предназначался для разработки больших программ для крупных предприятий, но коммерческого успеха не достиг. В конце 2004 года Borland объявила, что продолжит развитие классического C++ Builder и объединит его со средой разработки Delphi, прекратив, таким образом, разработку C++ BuilderX. Спустя примерно год после этого объявления, Borland выпустила Borland Developer Studio 2006, который включал в себя Borland C++Builder 2006, предлагавший улучшенное управление конфигурацией и отладкой. Borland Developer Studio 2006 — единственный полноценный комплект, содержащий Delphi, C++ Builder и C# Builder.

В 2007 году CodeGear выпустила C++Builder 2007, в котором реализовала полную поддержку API Microsoft Windows Vista, увеличила полноту соответствия стандарту ANSI C++, увеличила скорость компиляции и сборки до 500 %, включила поддержку MSBuild, архитектур баз данных DBX4 и «VCL для Web», поддерживающий AJAX. Поддержка API Microsoft Windows Vista включила в себя приложения, изначально оформленные в стиле Vista, и естественную поддержку VCL для Aero и Vista Desktop. CodeGear RAD Studio 2007 содержит C++Builder 2007 и Delphi. Также в 2007 году CodeGear «воскресила» марку «Turbo» и выпустила две «Turbo» версии C++Builder: Turbo C++ Professional и Turbo C++ Explorer (бесплатный), основанных на Borland C++ Builder 2006.

В конце 2008 года компания CodeGear выпустила новую версию RAD Studio, в которую вошли Delphi 2009 и С++Builder 2009. В 2009 году в составе RAD Studio вышел C++Builder 2010.

Ранее сообщалось, что следующая версия, CodeGear C++ Builder (кодовое имя «Commodore»), будет обладать поддержкой x86-64 и возможностью создавать машинный x86-64 код. Однако в 2010 году в состав RAD Studio XE включена версия C++ Builder XE без этой функциональности.

В 2012 году Embarcadero выпустила C++ Builder XE3, совместимый с Windows 8. В 2013 году был выпущен C++ Builder XE4.

Язык с

Шабло?ны (англ. template ) — средство языка C++, предназначенное для кодирования обобщённых алгоритмов, без привязки к некоторым параметрам (например, типам данных, размерам буферов, значениям по умолчанию).

В C++ возможно создание шаблонов функций и классов.

Шаблоны позволяют создавать параметризованные классы и функции. Параметром может быть любой тип или значение одного из допустимых типов (целое число, enum, указатель на любой объект с глобально доступным именем, ссылка). Например, нам нужен какой-то класс:

Для одной конкретной цели мы можем использовать этот класс. Но, вдруг, цель немного изменилась, и нужен еще один класс. Теперь нужно 30 элементов массива SomeArray и вещественный тип SomeValue элементов SomeArray . Тогда мы можем абстрагироваться от конкретных типов и использовать шаблоны с параметрами. Синтаксис: в начале перед объявлением класса напишем слово template и укажем параметры в угловых скобках. В нашем примере:

Тогда для первой модели пишем:

Хотя шаблоны предоставляют краткую форму записи участка кода, на самом деле их использование не сокращает исполняемый код, так как для каждого набора параметров компилятор создаёт отдельный экземпляр функции или класса. Как следствие, исчезает возможность совместного использования скомпилированного кода в рамках разделяемых библиотек.

Шаблон функции начинается с ключевого слова template , за которым в угловых скобках следует список параметров. Затем следует объявление функции:

Ключевое слово typename появилось сравнительно недавно, поэтому стандарт [1] допускает использование class вместо typename :

Вместо T допустим любой другой идентификатор.

Простейшим примером служит определение минимума из двух величин.

Если a меньше b то вернуть а, иначе — вернуть b

В отсутствие шаблонов программисту приходится писать отдельные функции для каждого используемого типа данных. Хотя многие языки программирования определяют встроенную функцию минимума для элементарных типов (таких как целые и вещественные числа), такая функция может понадобиться и для сложных (например «время» или «строка») и очень сложных («игрок» в онлайн-игре) объектов.

Так выглядит шаблон функции определения минимума:

Для вызова этой функции можно просто использовать её имя:

Для вызова шаблонной функции необходимо указать значения для всех параметров шаблона. Для этого после имени шаблона указывается список значений в угловых скобках:

Для каждого набора параметров компилятор генерирует новый экземпляр функции. Процесс создания нового экземпляра называется инстанцированием шаблона.

В примере выше компилятор создал две специализации шаблона функции sort (для типов char и int ) и две специализации шаблона read (для значений BufferSize 20 и 30). Последнее скорее всего расточительно, так как для каждого возможного значения параметра компилятор будет создавать новые и новые экземпляры функций, которые будут отличаться лишь одной константой.

В некоторых случаях компилятор может сам вывести (логически определить) значение параметра шаблона функции из аргумента функции. Например, при вызове вышеописанной функции sort необязательно указывать параметр шаблона (если он совпадает с типом элементов аргумента-массива):

В случае использования шаблонов классов с целыми параметрами также возможно выведение этих параметров. Например:

Правила выведения введены в язык для облегчения использования шаблона и для избежания возможных ошибок, например попытка использования sort< int > для сортировки массива символов.

Если параметр шаблона можно вывести по нескольким аргументам, то результат выведения должен быть в точности одинаков для всех этих аргументов. Например, следующие вызовы ошибочны:

Некоторые ошибки в описании шаблона могут быть выявлены уже в месте описания. Эти ошибки не зависят от конкретных параметров. Например:

Ошибки, связанные с использованием конкретных параметров шаблона, нельзя выявить до того, как шаблон использован. Например, шаблон min сам по себе не содержит ошибок, однако использование его с типами, для которых операция ‘<‘ не определена, приведёт к ошибке:

Если ввести операцию ‘<‘ до первого использования шаблона, то ошибка будет устранена. Так проявляется гибкость шаблонов в C++:

В классе, реализующем связный список целых чисел, алгоритмы добавления нового элемента списка, поиска нужного элемента не зависят от того, что элементы списка — целые числа. Те же алгоритмы применялись бы и для списка символов, строк, дат, классов игроков, и так далее.

Для использования шаблона класса, необходимо указать его параметры:

Параметрами шаблонов могут быть: параметры-типы, параметры обычных типов, параметры-шаблоны.

Для параметров любого типа можно указывать значения по умолчанию.

Если в шаблоне класса или функции необходимо использовать один и тот же шаблон, но с разными параметрами, то используются параметры-шаблоны. Например:

Нельзя использовать шаблоны функций в качестве параметров-шаблонов.

Правила выведения аргументов шаблона функции Править

Для параметров, которые являются типами (например, параметр T функции sort), возможно выведение, если аргумент функции имеет один из следующих типов:

Примером может служить шаблон функции sort, рассмотренный выше

Templ — имя шаблона класса

args — некие аргументы

type — некий тип

Class — некий класс

Указатель на член типа T произвольного класса.

type — некий тип

Class — некий класс

args — некие аргументы

Указатель на функцию-член типа T произвольного класса.

Члены шаблона класса являются шаблонами, причём с той же, что и у шаблона класса, параметризацией. В частности это означает, что определение функций-членов следует начинать с заголовка шаблона:

Внутри области видимости шаблона не нужно повторять спецификатор. Это значит, что например A<T>::A() — это конструктор, хотя можно писать и A<T>::A<T>() .

Если параметром шаблона является класс, у которого есть член, являющийся типом данных, то для использования этого члена, нужно применять ключевое слово typename . Например:

Проблемы возникают и с членами-шаблонами. Если шаблон (ConvertTo()), который является членом класса (A), который в свою очередь является параметром шаблона (f), используется в этом шаблоне (f) и не допускает выведения параметров, то необходимо использовать квалификатор template :

Шаблонное метапрограммирование в С++ страдает от множества ограничений, включая проблемы портируемости, отсутствие поддержки отладки или ввода/вывода в процессе инстанцирования шаблонов, длительное время компиляции, низкую читабельность кода, скудную диагностику ошибок и малопонятные сообщения об ошибках [2] . Подсистема шаблонов С++ определяется как полный по Тьюрингу чистый функциональный язык программирования, но программисты в функциональном стиле считают это провокацией и не спешат признавать С++ успешным языком [3] .

Многие языки (Java 5, Ада, Delphi 2009) реализуют поддержку обобщённого программирования более простым способом, некоторые даже на уровне системы типов (см. Eiffel, а также параметрический полиморфизм в языках семейства ML); такие языки не нуждаются в механизмах, похожих на шаблоны С++.

Средства макроподстановки в Си, хоть и не обладают Тьюринг-полнотой, представляют собой достаточное для низкоуровневого программирования средство порождающего программирования, и в C99 их возможности были существенно расширены.

Язык D обладает шаблонами, более мощными, чем C++. [4] .

  • C++ — см. template .
  • C#, см. generic .
  • Обобщённое программирование
  • Метапрограммирование
  • C++11 — новый стандарт C++, предполагающий значительное расширение возможностей шаблонов.
  1. ^ Стандарт C++ «Standard for the C++ Programming Language»: ISO/IEC 14882 1998.
  2. ^K. Czarnecki, J. O’Donnell, J. Striegnitz, W. TahaDSL implementation in metaocaml, template haskell, and C++. — University of Waterloo, University of Glasgow, Research Centre Julich, Rice University, 2004. .

Цитата: C++ Template Metaprogramming suffers from a number of limitations, including portability problems due to compiler limitations (although this has signi?cantly improved in the last few years), lack of debugging support or IO during template instantiation, long compilation times, long and incomprehensible errors, poor readability of the code, and poor error reporting.

  • ^Sheard T., Jones S.P.Template Metaprogramming for Haskell // Haskell Workshop. — Pittsburgh: ACM 1-58113-415-0/01/0009, 2002. .

    Цитата: Robinson’s provocative paper identi?es C++ templates as a major, albeit accidental, success of the C++ language design. Despite the extremely baroque nature of template meta-programming, templates are used in fascinating ways that extend beyond the wildest dreams of the language designers. Perhaps surprisingly, in view of the fact that templates are functional programs, functional programmers have been slow to capitalize on C++’s success

  • ^Digital Mars: D Programming Language 2.0 (англ.)
  • Источники:
    Язык с
    Си (англ. C ) — компилируемый статически типизированный язык программирования общего назначения, разработанный в 1969—1973 годах сотрудником Bell Labs Деннисом Ритчи как развитие языка Би.
    https://ru.wikipedia.org/wiki/%D0%A1%D0%B8_(%D1%8F%D0%B7%D1%8B%D0%BA_%D0%BF%D1%80%D0%BE%D0%B3%D1%80%D0%B0%D0%BC%D0%BC%D0%B8%D1%80%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D1%8F)
    Язык с
    Операцио?нная систе?ма , сокр. ОС (англ. operating system, OS ) — комплекс взаимосвязанных программ, предназначенных для управления ресурсами компьютера и организации взаимодействия с
    https://ru.wikipedia.org/wiki/%D0%9E%D0%BF%D0%B5%D1%80%D0%B0%D1%86%D0%B8%D0%BE%D0%BD%D0%BD%D0%B0%D1%8F_%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D0%B0
    Язык с
    10.2 Tokyo (22.03.2017) C++ Builder (по-русски обычно произносят [ си-плюс-плюс би?лдэр ], [ си би?лдэр ]) — программный продукт, инструмент быстрой разработки приложений (RAD),
    https://ru.wikipedia.org/wiki/C%2B%2B_Builder
    Язык с
    Шабло?ны (англ. template ) — средство языка C++, предназначенное для кодирования обобщённых алгоритмов, без привязки к некоторым параметрам (например, типам данных, размерам буферов,
    https://ru.wikipedia.org/wiki/%D0%A8%D0%B0%D0%B1%D0%BB%D0%BE%D0%BD%D1%8B_C%2B%2B

    COMMENTS